25,317 research outputs found

    A Gauge Invariant Theory for Time Dependent Heat Current

    Get PDF
    published_or_final_versio

    Pricing in Social Networks with Negative Externalities

    Full text link
    We study the problems of pricing an indivisible product to consumers who are embedded in a given social network. The goal is to maximize the revenue of the seller. We assume impatient consumers who buy the product as soon as the seller posts a price not greater than their values of the product. The product's value for a consumer is determined by two factors: a fixed consumer-specified intrinsic value and a variable externality that is exerted from the consumer's neighbors in a linear way. We study the scenario of negative externalities, which captures many interesting situations, but is much less understood in comparison with its positive externality counterpart. We assume complete information about the network, consumers' intrinsic values, and the negative externalities. The maximum revenue is in general achieved by iterative pricing, which offers impatient consumers a sequence of prices over time. We prove that it is NP-hard to find an optimal iterative pricing, even for unweighted tree networks with uniform intrinsic values. Complementary to the hardness result, we design a 2-approximation algorithm for finding iterative pricing in general weighted networks with (possibly) nonuniform intrinsic values. We show that, as an approximation to optimal iterative pricing, single pricing can work rather well for many interesting cases, but theoretically it can behave arbitrarily bad

    Mol-CycleGAN - a generative model for molecular optimization

    Get PDF
    Designing a molecule with desired properties is one of the biggest challenges in drug development, as it requires optimization of chemical compound structures with respect to many complex properties. To augment the compound design process we introduce Mol-CycleGAN - a CycleGAN-based model that generates optimized compounds with high structural similarity to the original ones. Namely, given a molecule our model generates a structurally similar one with an optimized value of the considered property. We evaluate the performance of the model on selected optimization objectives related to structural properties (presence of halogen groups, number of aromatic rings) and to a physicochemical property (penalized logP). In the task of optimization of penalized logP of drug-like molecules our model significantly outperforms previous results

    Distribution of carbon monoxide-producing neurons in human colon and in Hirschsprung's disease patients

    Get PDF
    Hirschsprung's disease (HSCR) is characterized by the absence of ganglion cells and impaired relaxation of the gut. Nitric oxide (NO) and, more recently, carbon monoxide (CO) have been identified as inhibitory neurotransmitters causing relaxation. A deficiency in NO has been reported in aganglionic gut; we hypothesized that CO could also be involved in impaired gut motility in HSCR. The aim of the study was to determine the distribution of CO-and NO-producing enzymes in the normal and aganglionic gut. We performed laser capture microdissection, reverse transcription-polymerase chain reaction, and immunohistochemistry on colon biopsies of normal controls (n = 9) and patients with HSCR (n = 10). The mRNA expression of heme oxygenase-2 (HO-2), immunoreactivities of HO-2 and NO synthase, was determined and compared. Results show a high level of expression of HO-2 mRNA localized in the myenteric plexus. Expression of HO-2 mRNA was also detected in the mucosa, submucosa, and muscular layer. Down-regulation of HO-2 mRNA expression was detected in the aganglionic colon. Immunoreactivities of HO-2 and NO synthase were localized mainly to the ganglion plexus and to nerve fibers within the muscle in the control colons and normoganglionic colons. HO-2-containing neurons were more abundant than NO synthase-containing neurons in the myenteric plexus. Nearly all of the NO synthase-containing neurons also contained HO-2. HO-2 and NO synthase were selectively absent in the myenteric and submucosal regions and in the muscle of the aganglionic colon. Our findings suggest involvement of both CO and NO in the pathophysiology of HSCR. Copyright 2002, Elsevier Science (USA). All rights reserved.postprin

    Comparison of 20nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages

    Get PDF
    Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies

    A new adaptive interpolation algorithm for 3D ultrasound imaging with speckle reduction and edge preservation

    Get PDF
    Author name used in this publication: Qinghua HuangAuthor name used in this publication: Yongping ZhengAuthor name used in this publication: Minhua Lu2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Platinum binding preferences dominate the binding of novel polyamide amidine anthraquinone platinum(II) complexes to DNA

    Get PDF
    Complexes incorporating a threading anthraquinone intercalator with pyrrole lexitropsin and platinum(II) moieties attached were developed with the goal of generating novel DNA binding modes, including the targeting of AT-rich regions in order to have high cytotoxicities. The binding of the complexes to DNA has been investigated and profiles surprisingly similar to that for cisplatin were observed; the profiles were different to those for a complex lacking the pyrrole lexitropsin component. The lack of selective binding to AT-rich regions suggests the platinum binding was dominating the sequence selectivity, and is consistent with the pyrrole lexitropsin slowing intercalation. The DNA unwinding profiles following platinum binding were evaluated by gel electrophoresis and suggested that intercalation and platinum binding were both occurring
    corecore